# **Circuit Design via Geometric Programming**

Sunghee Yun

CAE Team, Samsung Semiconductor

CoSoC Seminar II, SNU, 9/23/2005

# Outline

- Basic approach
- Geometric programming & generalized geometric programming
- Digital circuit design applications
- Statistical digital circuit design applications
- Monomial and posynomial fitting (?)
- Statistical power and ground network design (?)
- Conclusions

# **Basic Approach**

# **Basic approach**

- 1. formulate circuit design problem as **geometric program** (GP), an optimization problem with special form
- 2. solve GP using specialized method exploiting problem structure

- this talk focuses on step 1 (a.k.a. **GP modeling**)
- step 2 is **technology** 
  - you don't need to know

# Why?

- we can solve even large GPs very effectively, using recently developed methods
- so once we have a GP formulation, we can solve circuit design problem effectively

we will see that

- GP is especially good at handling a large number of concurrent constraints
- GP formulation is useful even when it is approximate

# **Trade-offs in optimization**

- general trade-off between **generality** and **effectiveness**
- generality
  - number of problems that can be handled
  - accuracy of formulation
  - ease of formulation
- effectiveness
  - speed of solution, scale of problems that can be handled
  - global vs. local solutions
  - reliability, baby-sitting, starting point
- example: least-squares vs. simulated annealing

### Where GP fits in

#### Least-squares

large problems solved no initial point theory solves restricted forms Convex optimization optimality condition duality theory somewhere in between good trade-off formulations takes effort high payoff, however

#### Simulated annealing

any nonlinear problem accuray of formulation eash of formulation

need to break this barrier

# **Geometric Programming**

#### Monomial & posynomial functions

 $x = (x_1, \ldots, x_n)$ : vector of positive optimization variables

• function g of form

$$g(x) = cx_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n},$$

with c > 0,  $\alpha_i \in \mathbf{R}$ , is called **monomial** 

• sum of monomials, i.e., function f of form

$$f(x) = \sum_{k=1}^{t} c_k x_1^{\alpha_{1k}} x_2^{\alpha_{2k}} \cdots x_n^{\alpha_{nk}},$$

with  $c_k > 0$ ,  $\alpha_{ik} \in \mathbf{R}$ , is called **posynomial** 

CoSoC Seminar II, SNU, 9/23/2005

#### **Examples**

with x, y, z variables,

- 0.23,  $2z\sqrt{x/y}$ ,  $3x^2y^{-.12}z$  are monomials (hence also posynomials)
- 0.23 + x/y,  $2(1 + xy)^3$ , 2x + 3y + 2z are posynomials
- 2x + 3y 2z,  $x^2 + \tan x$  are neither

### Geometric program (GP)

a special form of optimization problem:

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 1, \quad i=1,\ldots,m \\ & g_i(x)=1, \quad i=1,\ldots,p \end{array}$$

 $f_i$  are posynomials and  $g_i$  are monomials

- a highly nonlinear constrained optimization problem
- but, can be solved extremely efficiently
  - dense  $1000 \ {\rm vbles}, \ 10000 \ {\rm constraints}:$  one minute on PC
  - sparse  $1\ensuremath{\mathsf{M}}$  vbles,  $10\ensuremath{\mathsf{M}}$  constraints: one hour on PC

#### Example

$$\begin{array}{ll} \mbox{minimize} & x^{-1}y \\ \mbox{subject to} & 2x^{-1} \leq 1, \\ & (1/3)x \leq 1, \\ & x^2y^{-1/2} + 3y^{1/2}z^{-1} \leq 1, \\ & xy^{-1}z^{-2} = 1 \end{array}$$

- $\bullet$  this one could be solved by hand, or by sweeping values of  $x,\,y,$  and z
- but a GP with 1000 variables (which is easily solved if you know how) cannot be solved by hand or sweeping

#### **Posynomial and monomial algebra**

• monomials closed under products, division, positive scaling, powers (hence, inverse), *e.g.*,

$$\left(2x^{-0.2}y^{1.1}\right)\left(0.3xy^{-0.3}z^2\right) = 0.6x^{0.8}y^{0.8}z^2$$

• posynomials closed under sums, products, positive scaling, division by monomials, positive integer powers

### Simple GP extensions

- maximizing a monomial objective g
  - same as minimizing  $g^{-1}$ , a monomial (hence also posynomial)
- monomial-monomial equality constraint  $g_1 = g_2$ 
  - same as monomial equality constraint  $g_1/g_2 = 1$
- posynomial-monomial inequality constraint  $f \leq g$ 
  - same as posynomial inequality constraint  $f/g \leq 1$

### Example

- maximize volume of box with width w, height h, length d
- subject to limits on wall and floor areas, aspect ratios h/w, d/w

$$\begin{array}{ll} \text{maximize} & hwd \\ \text{subject to} & 2(hw + hd) \leq A_{\text{wall}}, \quad wd \leq A_{\text{flr}} \\ & \alpha \leq h/w \leq \beta, \quad \gamma \leq d/w \leq \delta \end{array}$$

in standard GP form:

$$\begin{array}{ll} \text{minimize} & h^{-1}w^{-1}d^{-1} \\ \text{subject to} & (2/A_{\text{wall}})hw + (2/A_{\text{wall}})hd \leq 1, \quad (1/A_{\text{flr}})wd \leq 1 \\ & \alpha h^{-1}w \leq 1, \quad (1/\beta)hw^{-1} \leq 1 \\ & \gamma wd^{-1} \leq 1, \quad (1/\delta)w^{-1}d \leq 1 \end{array}$$

CoSoC Seminar II, SNU, 9/23/2005

# **Trade-off analysis**

(no equality constraints, for simplicity)

• form perturbed version of original GP, with changed righthand sides:

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le u_i, \quad i = 1, \dots, m$ 

- $u_i > 1$  ( $u_i < 1$ ) means *i*th constraint is relaxed (tightened)
- let p(u) be optimal value of perturbed problem
- plot of *p* vs. *u* is (globally) **optimal trade-off surface** (of objective against constraints)

### Trade-off curves for maximum volume box example



- maximum volume V vs.  $A_{\rm flr}$ , for  $A_{\rm wall} = 10, 50, 100$
- h/w, d/w aspect ratio limits 0.5, 2

#### Sensitivity analysis

• optimal sensitivity of *i*th constraint is

$$S_i = \frac{\partial p/p}{\partial u_i/u_i} \bigg|_{u=1}$$

- S<sub>i</sub> predicts fractional change in optimal objective value if *i*th constraint is (slightly) relaxed or tightened
- very useful in practice; give quantitative measure of how tight a binding constraint is
- when we solve a GP we get all optimal sensitivities at no extra cost

#### Example

• minimize circuit delay, subject to power, area constraints (details later)

 $\begin{array}{ll} \mbox{minimize} & D(x) \\ \mbox{subject to} & P(x) \leq P^{\max}, \quad A(x) \leq A^{\max} \end{array}$ 

- both constraints tight at optimal  $x^*$ :  $P(x^*) = P^{\max}$ ,  $A(x^*) = A^{\max}$
- suppose optimal sensitivities are  $S^{\text{pwr}} = -2.1$ ,  $S^{\text{area}} = -0.3$
- we predict:
  - for 1% increase in allowed power, optimal delay decreases 2.1%
  - for 1% increase in allowed area, optimal delay decreases 0.3%

## How GPs are solved

the practical answer: you don't need to know

it's **technology:** 

- good algorithms are known
- good software implementations are available

#### How GPs are solved

- work with log of variables:  $y_i = \log x_i$
- take log of monomials/posynomials to get

$$\begin{array}{ll} \mbox{minimize} & \log f_0(e^y) \\ \mbox{subject to} & \log f_i(e^y) \leq 0, \quad i=1,\ldots,m \\ & \log g_i(e^y)=0, \quad i=1,\ldots,p \end{array}$$

- $\log f_i(e^y)$  are **convex** functions
- $\log g_i(e^y)$  are affine functions, *i.e.*, linear plus a constant
- solve (nonlinear) convex optimization problem above using interior-point method

#### Example

f(x, y, z) := xyz

substitute (x, y, z) with  $(e^v, e^w, e^u)$  respectively and take log of f

$$g(v, w, u) := \log f(e^v, e^w, e^u) = v + w + u$$

- f is **not** a convex function in (x, y, z)
- g is a convex function in (v, w, u), however

# Current state of the art

- basic interior-point method that exploits sparsity, generic GP structure
- approaching efficiency of linear programming solver
  - sparse 1000 vbles, 10000 monomial terms: few seconds
  - sparse 10000 vbles, 100000 monomial terms: minute
  - sparse  $10^6$  vbles,  $10^7$  monomial terms: hour

(these are order-of-magnitude estimates, on simple PC)

# History

- GP (and term 'posynomial') introduced in 1967 by Duffin, Peterson, Zener
- engineering applications from the very beginning
  - early applications in chemical, mechanical, power engineering
  - digital circuit transistor and wire sizing with Elmore delay since 1984 (Fishburn & Dunlap's TILOS)
  - analog circuit design since 1997 (Hershenson, Boyd, Lee)
- extremely efficient solution methods since 1994 or so (Nesterov & Nemirovsky)

# **Generalized Geometric Programming**

#### Handling positive fractional powers

- suppose  $f_1$ ,  $f_2$  are posynomials
- we can handle  $f_1 + f_2^3 \le 1$  directly, since LHS is posynomial
- we can't handle  $f_1 + f_2^{3.1} \leq 1$ , since  $f_2^{3.1}$  isn't posynomial
- trick: replace inequality  $f_1(x) + f_2(x)^{3.1} \le 1$  with two (posy) inequalities

 $f_1(x) + t^{3.1} \le 1, \qquad f_2(x) \le t$ 

t is new variable (called dummy or slack)

## Handling maximum

- suppose  $f_1$ ,  $f_2$ ,  $f_3$  are posynomials
- can't handle  $f_1 + \max\{f_2, f_3\} \le 1$  since  $\max\{f_2, f_3\}$  isn't posynomial
- trick: replace  $f_1 + \max\{f_2, f_3\} \le 1$  with three (posy) inequalities

$$f_1 + t \le 1, \qquad f_2 \le t, \qquad f_3 \le t$$

t is new slack variable

• can be applied recursively, together with fractional power trick

## Example

minimize 
$$xyz + 4x^{-1}y^{-3/2}$$
  
subject to  $\max\{x, y\} + z \le 1$   
 $y(x^{1/2} + 3z)^{1/2} + z^2 \le 1$ 

#### equivalent to $\mathsf{GP}$

minimize 
$$xyz + 4x^{-1}y^{-3/2}$$
  
subject to  $t_1 + z \le 1$ ,  $x \le t_1$ ,  $y \le t_1$   
 $yt_2^{1/2} + z^2 \le 1$ ,  $x^{1/2} + 3z \le t_2$ 

( $t_1$  and  $t_2$  are new variables)

CoSoC Seminar II, SNU, 9/23/2005

## **Generalized posynomials**

f is a **generalized posynomial** if it can be formed using addition, multiplication, positive power, and maximum, starting from posynomials

#### examples:

- max  $\left\{1+x_1, 2x_1+x_2^{0.2}x_3^{-3.9}\right\}$
- $\left(0.1x_1x_3^{-0.5} + x_2^{1.7}x_3^{0.7}\right)^{1.5}$
- $\left(\max\left\{1+x_1, 2x_1+x_2^{0.2}x_3^{-3.9}\right\}\right)^{1.7}+x_2^{1.1}x_3^{3.7}$
- $4x_1^{-0.1}x_2^{2.7}\max\left\{\max\left\{1+x_1, 2x_1+x_2^{0.2}x_3^{-3.9}\right\}+x_2^{1.1}, x_1x_2x_3\right\}\right\}$

CoSoC Seminar II, SNU, 9/23/2005

## Generalized geometric program (GGP)

minimize  $f_0(x)$ subject to  $f_i(x) \le 1$ , i = 1, ..., m $g_i(x) = 1$ , i = 1, ..., p

 $f_i$  are **generalized posynomials**,  $g_i$  are monomials

- using tricks, can convert GGP to GP, then solve efficiently
- conversion tricks can be automated
  - parser scans problem description, forms GP
  - GP solver solves GP
  - solution transformed back (dummy variables eliminated)

## **Floor planning**

- configure cell widths, heights
- minimize bounding box area
- fixed cell areas
- aspect ratio constraints



minimize 
$$hw$$
  
subject to  $h_iw_i = A_i$ ,  $1/\alpha_{\max} \le h_i/w_i \le \alpha_{\max}$ ,  
 $\max\{h_1, h_2\} + \max\{h_3, h_4\} \le h$ ,  
 $\max\{w_1 + w_2, w_3 + w_4\} \le w$ 

#### ...a GGP

# **Digital Circuit Design Applications**



- combinational logic; circuit topology & gate types given
- gate sizes (scale factors  $x_i \ge 1$ ) to be determined
- scale factors affect total circuit area, power and delay

## Area & power

- (approximate) total circuit area:  $A = (a_1x_1 + \dots + a_nx_n)\overline{A}$ 
  - $\bar{A}$ : area of unit scaled inverter
  - $a_i$ : area of unit scaled gate i (in units of  $\overline{A}$ )
- total power (dynamic + static):

$$P = (b_1 x_1 + \dots + b_n x_n) f_{\text{clk}} \overline{E} + (c_1 x_1 + \dots + c_n x_n)$$

- $f_{\rm clk}$ : clock frequency
- $\bar{E}$ : energy lost per transition by unit scaled inverter driving no load
- A and P are linear functions of x, with positive coefficients, hence posynomials

### RC gate delay model



• input & intrinsic capacitances, driving resistance, load capacitance

$$C_i^{\text{in}} = \bar{C}_i^{\text{in}} x_i, \qquad C_i^{\text{int}} = \bar{C}_i^{\text{int}} x_i, \qquad R_i = \bar{R}_i / x_i, \qquad C_i^{\text{L}} = \sum_{j \in \text{FO}(i)} C_j^{\text{in}}$$

CoSoC Seminar II, SNU, 9/23/2005

#### RC gate delay model

model

$$\bar{C}_i^{\text{in}} = \alpha_i \eta \bar{C}, \qquad \bar{C}_i^{\text{int}} = \beta_i \bar{C}, \qquad R_i = \gamma_i \bar{R} / x_i$$

- $\bar{C}$ : intrinsic capacitance of unit scaled inverter
- $\eta$ : (input capacitance of unit scaled inverter)/ $\bar{C}$
- $\bar{R}$ : driving resistance of unit scaled inverter
- RC gate delay:

$$D_i = 0.69R_i(C_i^{\mathrm{L}} + C_i^{\mathrm{int}}) = \left(\gamma_i\beta_i + (\gamma_i/x_i)\sum_{j\in\mathrm{FO}(i)}\eta\alpha_j x_j\right)\bar{D}$$

 $\bar{D} = 0.69 \bar{R} \bar{C}$ : delay of unit scaled inverter with no load

•  $D_i$  are **posynomials** (of scale factors)
# Paths and circuit delay



- delay of a path: sum of delays of gates on path . . . **posynomial**
- circuit delay: maximum delay over all paths ... generalized posynomial

## Basic gate scaling problem

$$\begin{array}{ll} \text{minimize} & D\\ \text{subject to} & P \leq P^{\max}, \quad A \leq A^{\max}\\ & 1 \leq x_i, \quad i=1,\ldots,n \end{array}$$

### ...a **GGP**

extensions/variations:

- minimize area, power, or some combination
- add other constraints
- optimal trade-off of area, power, delay

### **Extensions**

 $\begin{array}{ll} \mbox{minimize} & P \\ \mbox{subject to} & D \leq D^{\max}, & A \leq A^{\max} \\ & l_i \leq x_i \leq u_i, & i = 1, \dots, n \\ & \max\{x_{i_k}, x_{j_k}\} \leq p_k, & k = 1, \dots, m \end{array}$ 

$$\begin{array}{ll} \text{minimize} & PD \\ \text{subject to} & A \leq A^{\max} \\ & l_i \leq x_i \leq u_i, \quad i = 1, \dots, n \\ & p_k \leq x_{i_k} / x_{j_k} \leq q_k, \quad k = 1, \dots, m \end{array}$$

#### ...a **GGP**

CoSoC Seminar II, SNU, 9/23/2005

## **Example: Ladner-Fisher 32-bit adder**

- 451 gates (scale factors); RC gate delay model
- typical optimization time: few seconds on PC



## Ladner-Fisher 32-bit adder with integer scale factors

- add constraints  $x_i \in \{1, 2, 3, \ldots\}$
- simple rounding of optimal continuous scalings



# Sparse GP gate scaling problem

$$\begin{array}{ll} \text{minimize} & D\\ \text{subject to} & T_j \leq D \quad \text{for } j \text{ an output gate}\\ & T_j + D_i \leq T_i \quad \text{for } j \in \mathrm{FI}(i)\\ & P \leq P^{\max}, \quad A \leq A^{\max}\\ & 1 \leq x_i, \quad i = 1, \dots, n \end{array}$$

- $T_i$  are upper bounds on signal arrival times
- extremely sparse GP; can be solved very efficiently

### **Basic formulation vs. Sparse formulation**

• assume combinational circuit structure below



- number of contraints grows  $\sim \mathcal{O}(2^n)$  in basic formulation
- number of contraints grows  $\sim \mathcal{O}(n)$  in sparse formulation
- hence sparse formulation is far superior to basic formulation

# Better (generalized posynomial) models

can greatly improve model, while retaining GP compatibility (hence efficient global solution)

• area, delay, power can be any generalized posynomials of scale factors, *e.g.*,

$$D_i = a_i + b_i (C_i^{\rm L})^{1.05} x_i^{-0.9}, \qquad P_i = c_i + d_i (C_i^{\rm L})^{1.2} + e_i x_i^{1.1}$$

• these can be found by more refined analysis, or fitting generalized posynomials to simulation/characterization data

### **Distinguishing gate transitions**

- can distinguish rising and falling transitions, with different delay, energy,  $C^{\rm in}$ , for each gate input/transition
- (bounds on) signal arrival times can be propagated through recursions, *e.g.*,

$$T_{i}^{r} = \max_{j \in \mathrm{FI}(i)} \left\{ T_{j}^{r} + D_{ji}^{rr}, \ T_{j}^{f} + D_{ji}^{fr} \right\}, \quad T_{i}^{f} = \max_{j \in \mathrm{FI}(i)} \left\{ T_{j}^{r} + D_{ji}^{rf}, \ T_{j}^{f} + D_{ji}^{ff} \right\}$$

• still a GGP, hence can be efficiently solved

# **Further Improvement**

- modeling signal slopes
- arrival time propagation with soft maximum
- design with a standard library
- robust design over corners
- multiple-scenario design

## Modeling signal slopes

- associate (worst-case) output signal transition time  $\tau$  with each gate
- model delay, energy, input capacitance as (generalized posynomial) functions of scale factor, load capacitance, input transition time
- propagate output transition time using (generalized posynomial) function of scale factor, load capacitance, input transition time
- common model:

$$D_i = a_i C_i^{\mathrm{L}} / x_i + \kappa_i \tau_i^{\mathrm{in}}, \qquad E_i = b_i (C_i^{\mathrm{L}} + c_i x_i) + \lambda_i x_i \tau_i^{\mathrm{in}}, \qquad \tau_i = \nu_i D_i$$

• gate scaling problem still a GGP

### Arrival time propagation with soft maximum

- can even generalize max function used to propagate signal arrival times
- replace with soft maximum, e.g.,  $(T_1^p + \cdots + T_k^p)^{1/p}$  (say,  $p \approx 10$ )
- can account for increased delay when inputs switch simultaneously
- can choose soft maximum function by fitting simulation data
- gate scaling problem remains a GGP

# Design with a standard library

- circuit topology is fixed; choose size for each gate from **discrete library**
- a combinatorial optimization problem, difficult to solve exactly
- GP approach
  - for each gate type in library, fit given library data to find GP-compatible models of delay, power, . . .
  - size with **continuous** fitted models, using GP
  - snap continuous scale factors back to standard library

## **Robust design over corners**

- have K corners or scenarios, e.g., combinations of
  - process parameters
  - supply voltage
  - temperature
- for each corner have (slightly) different models for delay, power, ....
- robust design finds gate scalings that work well for all corners

### Robust design over corners

• basic (worst-case) robust design over corners:

 $\begin{array}{ll} \text{minimize} & \max\{D^{(1)}, \dots, D^{(K)}\} \\ \text{subject to} & P^{(1)}(x) \leq P^{\max}, \dots, P^{(K)}(x) \leq P^{\max} \\ & A \leq A^{\max} \\ & 1 \leq x_i, \quad i = 1, \dots, n \end{array}$ 

• many variations, *e.g.*, minimize average delay over corners,

$$(1/K)\left(D^{(1)} + \dots + D^{(K)}\right)$$

• results in (very large, but sparse) **GGP** 

# Multiple-scenario design

- have K scenarios or operating modes, with K models for P, D, . . .
- scenarios are combinations of
  - supply & threshold voltages
  - clock frequency
  - specifications & constraints
- like corner-based robust design, but scenarios are intentional
- find one set of gate scalings that work well in all scenarios

### Example

- find single set of gate scalings to support both high performance mode and low power mode
  - in high performance mode:  $P^{\text{fast}} \leq \bar{P}^{\text{fast}}$ ,  $D^{\text{fast}} \leq \bar{D}^{\text{fast}}$
  - in low power mode:  $P^{\text{slow}} \leq \bar{P}^{\text{slow}}$ ,  $D^{\text{slow}} \leq \bar{D}^{\text{slow}}$

$$\begin{array}{ll} \text{minimize} & A\\ \text{subject to} & P^{\text{slow}} \leq \bar{P}^{\text{slow}}, & D^{\text{slow}} \leq \bar{D}^{\text{slow}}\\ & P^{\text{fast}} \leq \bar{P}^{\text{fast}}, & D^{\text{fast}} \leq \bar{D}^{\text{fast}}\\ & 1 \leq x_i, \quad i = 1, \dots, n \end{array}$$

### ...a **GGP**

# **Statistical Digital Circuit Design Applications**

## Statistical parameter variations in circuits

- statistical variations in process
  - random defects: random particles while CMP, CVD, PVD, etc.
  - systematic defects: OPC, etc.
- statistical variations in environment: supply voltage, temperature, *etc.*

 $\Rightarrow$  induces statistical variations in (physical) parameters, e.g.,  $L_{\rm eff}$ , W,  $T_{\rm ox}$ ,  $V_{\rm tho}$ ,  $\mu_{\rm n}$ , etc.

# **DFM & yield enhancement**

- statistical variation significantly affects performance in DSM regime
- statistical variation is very complex and extremely hard; modeling still open
- merely start exploring statistical design methods; DFM, DFY, DFT, etc.
- everyone is having difficulty achieving this goal (but everyone is doing it!)

refer to ITRS

### Statistical performance variation

- circuit peformance depends on random device and process parameters
- hence, performance measures like P, D are random variables  $\mathbf{P}$ ,  $\mathbf{D}$
- delay **D** is max of many random variables; often skewed to right
- distributions of  $\mathbf{P}$ ,  $\mathbf{D}$  depend on gate scalings  $x_i$



• related to (parametric) yield, DFM, DFY . . .

### Statistical design

• measure random performance measures by 95% quantile (say)

$$\begin{array}{ll} \text{minimize} & \mathbf{Q}^{.95}(\mathbf{D}) \\ \text{subject to} & \mathbf{Q}^{.95}(\mathbf{P}) \leq P^{\max}, & A \leq A^{\max} \\ & 1 \leq x_i, \quad i = 1, \dots, n \end{array}$$

- extremely difficult stochastic optimization problem; almost no analytic/exact results
- but, (GP-compatible) heuristic method works well

### Heuristic for statistical design

- assume generalized posynomial models for gate delay mean  $D_i(x)$  and variance  $\sigma_i(x)^2$
- e.g.,  $\sigma_i(x) = \eta_i x_i^{-1/2} D_i(x)$  (Pelgrom's model)
- optimize using surrogate gate delays

$$\tilde{D}_i(x) = D_i(x) + \kappa_i \sigma_i(x)$$

 $\kappa_i \sigma_i(x)$  are **margins** on gate delays ( $\kappa_i$  is typically 2 or 3)

• verify statistical performance via Monte Carlo (can update  $\kappa_i$ 's and repeat)

### Ladner-Fisher 32-bit adder example

- minimize maximum delay with constraints
- simplified RC delay model
- Pelgrom variation model  $(15\% \sigma/\mu \text{ for min size devices})$
- design variables: device widths for 451 gates . . .



Schematic of Ladner-Fisher 32-bit adder

# Nominal (or deterministic) optimization result



 $\ldots$  around 2800 of 6400 total paths are critical

# **Cost of statistical variation**

Monte Carlo analysis of nominal optimal design



### Statistically robust design via new method

same circuit, uncertainty model, and constraints



# Statistically robust design via new method

|                    | Nominal delay | 90% delay   |
|--------------------|---------------|-------------|
| Nominal design     | <b>45.4</b>   | 53.6        |
| Statistical design | 46.3          | <b>46.9</b> |

# Nominal optimal versus statistical design



## Path delay mean/std. dev. scatter plots



# **Monomial and Posynomial Fitting**

### A basic property of posynomials

- if f is a monomial, then  $\log f(e^y)$  is affine (linear plus constant)
- if f is a posynomial, then  $\log f(e^y)$  is **convex**
- roughly speaking, a posynomial is convex when plotted on log-log plot
- midpoint rule for posynomial f:

- let z be elementwise geometric mean of  $x,\,y,\,i.e.,\,z_i=\sqrt{x_iy_i}$  - then  $f(z)\leq \sqrt{f(x)f(y)}$ 

- a converse: if  $\log \phi(e^y)$  is convex, then  $\phi$  can be approximated as well as you like by a posynomial

# Monomial/posynomial approximation: Theory

when can a function f be approximated by a monomial or generalized posynomial?

- form function  $F(y) = \log f(e^y)$
- f can be approximated by a monomial if and only if F is nearly affine (linear plus constant)
- f can be approximated by a generalized posynomial if and only if F is nearly convex



- tanh(x) can be reasonably well fit by a monomial
- 0.5/(1.5-x) can be fit by a generalized posynomial
- $(2/\sqrt{\pi}) \int_x^\infty e^{-t^2} dt$  cannot be fit very well by a generalized posynomial

CoSoC Seminar II, SNU, 9/23/2005

### What problems can be approximated by GGPs?

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 1$ ,  $i = 1, ..., m$   
 $g_i(x) = 1$ ,  $i = 1, ..., p$ 

- transformed objective and inequality constraint functions  $F_i(y) = \log f_i(e^y)$  must be nearly convex
- transformed equality constraint functions  $G_i(y) = \log g_i(e^y)$  must be nearly affine

### Monomial fitting via log-regression

find coefficient c > 0 and exponents  $a_1, \ldots, a_n$  of monomial f so that

$$f(x^{(i)}) \approx f^{(i)}, \qquad i = 1, \dots, N$$

• rewrite as

$$\log f(x^{(i)}) = \log c + a_1 \log x_1^{(i)} + \dots + a_n \log x_n^{(i)}$$
$$\approx \log f^{(i)}, \qquad i = 1, \dots, N$$

• use least-squares (regression) to find  $\log c$ ,  $a_1, \ldots, a_n$  that minimize

$$\sum_{i=1}^{N} \left( \log c + a_1 \log x_1^{(i)} + \dots + a_n \log x_n^{(i)} - \log f^{(i)} \right)^2$$

CoSoC Seminar II, SNU, 9/23/2005
#### **Posynomial fitting via Gauss-Newton**

find coefficients and exponents of posynomial f so that

$$f(x^{(i)}) \approx f^{(i)}, \qquad i = 1, \dots, N$$

• minimize sum of squared fractional errors

$$\sum_{i=1}^{N} \left( \frac{f^{(i)} - f(x^{(i)})}{f^{(i)}} \right)^2$$

can be (locally) solved by Gauss-Newton method

• needs starting guess for coefficients, exponents

#### **Posynomial fitting example**

- 1000 data points from  $f(x) = (1 0.5(x_1^2 + x_2 + x_3^{-1} 1)^2)^{1/2}$  over  $0.1 \le x_i \le 1$
- cumulative error distribution for 3-, 5-, and 10-term posynomial fits



# **Statistical Power and Ground Network Design**

## Global power & ground network design



**Problem:** size wires (choose topology)

- minimize wire area subject to node voltage, current density constraints
- don't consider fast dynamics (C,L)
- do consider (slow) variation in block currents



- segment conductance  $g_k = w_k/(\rho l_k)$ ; current density  $j_k = i_k/w_k$
- conductance matrix  $G(w) = \sum_k w_k a_k a_k^T$ ; node voltages  $V = G(w)^{-1}I$
- statistical model for block currents:  $\mathbf{E} I I^T = \Gamma$ 
  - $\Gamma$  is block current correlation matrix -  $\Gamma_{jj}^{1/2} = \text{RMS}(I_j)$ ;  $\Gamma_{ij}$  gives correlation between  $I_i$ ,  $I_j$

### Sizing problem

 $\begin{array}{ll} \text{minimize} & A = \sum_k l_k w_k \quad (\text{area}) \\ \text{subject to} & V_j \leq V_{\max} & (\text{node voltage limit}) \\ & \mathbf{E} \, j_k^2 \leq j_{\max}^2 & (\text{RMS current density limit}) \\ & w_k \geq 0 & (\text{nonneg. wire widths}) \end{array}$ 

can't solve, except special case I constant

- (Erhard & Johannes) can improve any mesh design by pruning to a tree
- (Chowdhury & Breuer) can size P&G trees via geometric programming

#### Meshes, trees and current variation



- $I_1$ ,  $I_2$  constant (or highly correlated): set  $w_2 = 0$  (yields tree)
- $I_1$ ,  $I_2$  anti-correlated: better to use  $w_2 > 0$  (yields mesh)

#### Average power formulation

- power dissipated in wires:  $P = V^T I = I^T G(w)^{-1} I$
- average power:  $\mathbf{E} P = \mathbf{E} I^T G(w)^{-1} I = \mathbf{Tr} G(w)^{-1} \Gamma$

minimize 
$$\operatorname{Tr} G(w)^{-1}\Gamma + \mu \sum_k l_k w_k$$
 (average power  $+\mu$ ·area) subject to  $w_k \ge 0$ 

- parameter  $\mu>0$  trades off average power, area
- nonlinear but convex problem, readily (globally) solved
- indirectly limits  $\mathbf{E} j_k^2$ ,  $V_j$

### **Properties of solution**

observation: many  $w_k$ 's are zero, *i.e.*, many wires aren't used average power formulation can be used for **P&G topology selection**:

- start with lots of (potential) wires
- let average power formulation choose among them
- topology (given by nonzero  $w_k$ ) independent of  $\mu$

resulting current density and node voltages:

- RMS current density is equal in all (nonzero) segments in fact  $\mu = \rho j_{\text{max}}^2$  yields  $\mathbf{E} j_k^2 = j_{\text{max}}^2$  in all (nonzero) segments
- observation:  $V_j$  are small



- $10 \times 10$  grid, each node connected to neighbors (180 segments)
- 8 current sources,  $I \in \mathbf{R}^8$  is random with three possible values
- 4 ground pins on the perimeter (at corner points)

design for constant currents (with same RMS values)



- a tree; each source connected to nearest ground pin
- RMS current density 1, area = 448, max. voltage = 7.7

#### design via average power formulation



- mesh, not a tree
- RMS current density 1, area = 347, max. voltage = 5.7

#### **Barrier method**

use Newton's method to minimize

$$\operatorname{Tr} G(w)^{-1}\Gamma + \mu l^T w - \beta^{(i)} \sum_k \log w_k$$

- barrier term  $-\beta \sum_k \log w_k$  ensures  $w_k > 0$
- solve for decreasing sequence of  $\beta^{(i)}$
- can show  $w^{(i)}$  is at most  $n\beta^{(i)}$  suboptimal
- $O(n^3)$  cost per Newton step

works very well for n < 1000 or so; easy to add other convex constraints

## Pruning

- often clear in few iterations which  $w_k$  are converging to 0
- removing these  $w_k$  early greatly speeds up convergence
- sizes 1000s of  $w_k$ s in minutes

#### Where $\Gamma$ comes from

• from simulation: 
$$\Gamma = \frac{1}{T_{\text{sim}}} \int_0^{T_{\text{sim}}} I(t) I(t)^T dt$$

• or, from block RMS currents and estimates of correlation:

$$\Gamma_{ij} = \mathsf{RMS}(I_i) \; \mathsf{RMS}(I_j) \; \rho_{ij}$$

 $\bullet\,$  can use eigenvalue decomposition to simplify  $\Gamma\,$ 

$$\Gamma = \sum_{i} \lambda_{i} q_{i} q_{i}^{T}, \qquad \hat{\Gamma} = \sum_{i=1}^{r} \lambda_{i} q_{i} q_{i}^{T}$$

(reduced rank approximation speeds up avg. pwr. solution)

## Observations

- P&G meshes outperform trees when current variation taken into account
- Average power formulation
  - yields tractable convex optimization problem
  - chooses topology
  - guarantees RMS current density limit
  - indirectly limits node voltages

# Conclusions

## Conclusions

(generalized) geometric programming

- comes up in a variety of circuit sizing contexts
- can be used to formulate a variety of problems
- admits fast, reliable solution of large-scale problems
- is good at concurrently balancing lots of coupled constraints and objectives
- is useful even when problem has discrete constraints

# Do we remember what this talk has been about?

## Let me re-emphasize moral!

## Approach

- most problems don't come naturally in GP form; be prepared to reformulate and/or approximate
- GP modeling is not a "try my software" method; it requires thinking
- our approach:
  - start with simple analytical models (RC, square-law, Pelgrom, . . . ) to verify GP might apply
  - then fit GP-compatible models to simulation or measured data

- looking for keys under street light (not where keys were lost, but lighting is good)
- forcing problems into GP-compatible form (problems aren't GPs, but solving is good)
- can achieve robust and statistically better design even though cannot do good statistical analysis

#### References

- A tutorial on geometric programming
- Digital circuit sizing via geometric programming
- Analog circuit design via geometric programming
- Convex optimization, Cambridge Univ. Press 2004

available at www.stanford.edu/~boyd/research.html

# Thank You

e-mail: sunghee\_yun@hotmail.com