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Basic Approach



Basic approach

1. formulate circuit design problem as geometric program (GP), an
optimization problem with special form

2. solve GP using specialized method exploiting problem structure

e this talk focuses on step 1 (a.k.a. GP modeling)
e step 2 is technology

— you don't need to know
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Why?

e we can solve even large GPs very effectively, using recently developed
methods

e so once we have a GP formulation, we can solve circuit design problem
effectively

we will see that

e GP is especially good at handling a large number of concurrent
constraints

e GP formulation is useful even when it is approximate
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Trade-offs in optimization

e general trade-off between generality and effectiveness

e generality

— number of problems that can be handled
— accuracy of formulation
— ease of formulation

e cffectiveness

— speed of solution, scale of problems that can be handled
— global vs. local solutions
— reliability, baby-sitting, starting point

e example: least-squares vs. simulated annealing
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Least-squares
large problems solved
no initial point theory

solves restricted forms
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Where GP fits in

Convex optimization
optimality condition
duality theory
somewhere in between

good trade-off

formulations takes effort

high payoff, however

Simulated annealing
any nonlinear problem
accuray of formulation

eash of formulation

need to break this barrier



Geometric Programming



Monomial & posynomial functions
r = (x1,...,%y): vector of positive optimization variables

e function g of form

g(x) = caxlay® -y,

with ¢ > 0, o; € R, is called monomial

e sum of monomials, 7.e., function f of form

t
fl@) = cpa oy gk,

k=1

with cx > 0, a;r € R, is called posynomial
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Examples

with x, y, z variables,

e 0.23, 2z+/x/y, 3x*y 1%z are monomials (hence also posynomials)
e 0.23+=x/y, 2(1+xy)3, 2x+ 3y + 2z are posynomials

o 2v + 3y — 2z, x®+tanx are neither
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Geometric program (GP)

a special form of optimization problem:

minimize  fo(x)

f; are posynomials and g; are monomials

e a highly nonlinear constrained optimization problem

e but, can be solved extremely efficiently

— dense 1000 vbles, 10000 constraints: one minute on PC
— sparse 1M vbles, 10M constraints: one hour on PC
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Example

minimize z " ly

subject to 2z~ ! <1,
(1/3)z <1,
22y~ 12§ 312,71 < 1
ry 272 =1

e this one could be solved by hand, or by sweeping values of z, y, and z

e but a GP with 1000 variables (which is easily solved if you know how)
cannot be solved by hand or sweeping
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Posynomial and monomial algebra

e monomials closed under products, division, positive scaling, powers
(hence, inverse), e.g.,

(2 —0.2 11) <03£Ify 0.3 2) —06513‘08 0.8 2

e posynomials closed under sums, products, positive scaling, division by
monomials, positive integer powers
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Simple GP extensions

e maximizing a monomial objective g

— same as minimizing g~ !, a monomial (hence also posynomial)

e monomial-monomial equality constraint g1 = go

— same as monomial equality constraint g1/g2 = 1

e posynomial-monomial inequality constraint f < g

— same as posynomial inequality constraint /g <1
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Example

e maximize volume of box with width w, height h, length d

e subject to limits on wall and floor areas, aspect ratios h/w, d/w

maximize hwd
subject to  2(hw + hd) < Ayan, wd < Ag,
a<h/w<p, y<d/w<i

in standard GP form:

minimize A lw td~!

subject to (Q/Awau)hw —+ (Z/Awau)hd <1, (1/Aﬂr)wd <1
ah~tw<1, (1/Bhw t<1
ywd™t <1, (1/5)wtd<1
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Trade-off analysis

(no equality constraints, for simplicity)

e form perturbed version of original GP, with changed righthand sides:

minimize  fo(z)
subject to  fi(x) <w;, i=1,...,m

e u; > 1 (u; < 1) means ith constraint is relaxed (tightened)
o let p(u) be optimal value of perturbed problem

e plot of p vs. u is (globally) optimal trade-off surface (of objective
against constraints)
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Trade-off curves for maximum volume box example

103, EAW&H = 100
{Awan = 50
102} f
= |Ayan = 10
10}
10 102 10°
Aﬂoor

e maximum volume V' vs. Ag;, for Ayan = 10, 50, 100

e h/w, d/w aspect ratio limits 0.5, 2
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Sensitivity analysis

e optimal sensitivity of ¢th constraint is

Op/p

- auz/uz u—=1

Si
e S, predicts fractional change in optimal objective value if 7th constraint
is (slightly) relaxed or tightened

e very useful in practice; give quantitative measure of how tight a binding
constraint is

e when we solve a GP we get all optimal sensitivities at no extra cost
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Example

e minimize circuit delay, subject to power, area constraints (details later)

minimize  D(z)
subject to  P(x) < P™a*  A(x) < Amax

e both constraints tight at optimal x*: P(x*) = P™?*, A(x*) = A™max
e suppose optimal sensitivities are SPV" = —2.1, §#"°* = —0.3

e we predict:

— for 1% increase in allowed power, optimal delay decreases 2.1%
— for 1% increase in allowed area, optimal delay decreases 0.3%
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How GPs are solved

the practical answer: you don’t need to know

it's technology:

e good algorithms are known

e good software implementations are available
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How GPs are solved

e work with log of variables: y; = log x;
e take log of monomials/posynomials to get
minimize  log fo(eY)

subject to log f;(e¥) <0, i=1,...,m
log gi(e¥) =0,

e log f;(eY) are convex functions
e log g;(e¥) are affine functions, i.e., linear plus a constant

e solve (nonlinear) convex optimization problem above using
interior-point method
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Example

f(z,y,2) = zyz

substitute (x,y, z) with (e, e”, e") respectively and take log of f

g(v,w,u) :=log f(e’,e", e") =v+w+u

e f is not a convex function in (z,y, 2)

e g is a convex function in (v, w,u), however
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Current state of the art

e basic interior-point method that exploits sparsity, generic GP structure

e approaching efficiency of linear programming solver

— sparse 1000 vbles, 10000 monomial terms: few seconds
— sparse 10000 vbles, 100000 monomial terms: minute
— sparse 10° vbles, 107 monomial terms: hour

(these are order-of-magnitude estimates, on simple PC)
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History

e GP (and term ‘posynomial’) introduced in 1967 by Duffin, Peterson,
Zener

e engineering applications from the very beginning

— early applications in chemical, mechanical, power engineering
— digital circuit transistor and wire sizing with Elmore delay since 1984

(Fishburn & Dunlap's TILOS)
— analog circuit design since 1997 (Hershenson, Boyd, Lee)

e extremely efficient solution methods since 1994 or so
(Nesterov & Nemirovsky)
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Generalized Geometric Programming



Handling positive fractional powers

e suppose f1, fo are posynomials
e we can handle f; + f3 <1 directly, since LHS is posynomial
e we can't handle f; + f3:1 <1, since f3:! isn't posynomial

o trick: replace inequality fi(z) + fo(2)>" < 1 with two (posy)
inequalities
file) +831 <1, fo(x) <t

t is new variable (called dummy or slack)

CoSoC Seminar I, SNU, 9/23/2005 22



Handling maximum

e suppose f1, f2, f3 are posynomials
e can't handle f; + max{fo, f3} < 1 since max{ fo, f3} isn't posynomial
e trick: replace f1 + max{fs, f3} < 1 with three (posy) inequalities
Jit+t<1, Jo < t, J3 <t
t i1s new slack variable

e can be applied recursively, together with fractional power trick
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Example

minimize  xyz + 4z~ ly=3/2

subject to max{z,y}+ 2 <1
y(x'/? +32)1/2 422 < 1

equivalent to GP

minimize  zyz + 4z~ ly=3/?

subjectto t1+2<1, x<t;, y<t

yta/? 22 <1, M2 432 <ty

(t1 and to are new variables)

CoSoC Seminar I, SNU, 9/23/2005

24



Generalized posynomials

f is a generalized posynomial if it can be formed using addition,
multiplication, positive power, and maximum, starting from posynomials

examples:

® max {1 + 21,221 + 338‘2:163_3'9}

o (0.1z125°° + 23 72%7) 1.5

o (max{l+z,2z1 + x8°2x§3-9})1' B

o 4x_0 1 %7max {max{l + 1,271 —l—xo 2x339} —|—:1:1 1 xlxgajg}
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Generalized geometric program (GGP)

minimize  fo(x)
subject to  f;(z) <

fi; are generalized posynomials, g; are monomials

e using tricks, can convert GGP to GP, then solve efficiently

e conversion tricks can be automated

— parser scans problem description, forms GP
— GP solver solves GP
— solution transformed back (dummy variables eliminated)
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Floor planning

e
configure cell widths, heights hy ho
minimize bounding box area hd. woy
fixed cell areas
aspect ratio constraints hs ha
ws o

minimize  hw

SUbjeCt to hzwz — Az'a 1/05max < hz/wz < Qmax
max{hi, ho} + max{hs, hy} < h,
max{w; + wa, w3 + wy} < w

.. a GGP
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Digital Circuit Design Applications



Gate scaling
input flip flop combinational logic block output flip flops

| =
! > 6 >
in—— d 2 —— out
s > 7 >
» 3
clock r. ]

e combinational logic; circuit topology & gate types given
e gate sizes (scale factors x; > 1) to be determined

e scale factors affect total circuit area, power and delay
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Area & power

e (approximate) total circuit area: A = (a;x; + -+ apzy)A

— A: area of unit scaled inverter
— a;: area of unit scaled gate 4 (in units of A)

e total power (dynamic + static):
P = (biz1+ -+ bpxy) faxE + (1214 - - + cay)

— fax: clock frequency
— FE: energy lost per transition by unit scaled inverter driving no load

e A and P are linear functions of x, with positive coefficients, hence
posynomials

CoSoC Seminar I, SNU, 9/23/2005

29



RC gate delay model

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i Vaa
an
. w .
cr T o

e input & intrinsic capacitances, driving resistance, load capacitance

Ci* = Ci'w;, O = O™, R; = R;/x;, Gy = Z C}n
JEFO(i)
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RC gate delay model

e model

(jzin — 04757767 @m — 6iéa R; = %’R/ivz'

— C': intrinsic capacitance of unit scaled inverter
— 1. (input capacitance of unit scaled inverter)/C
— R: driving resistance of unit scaled inverter

e RC gate delay:

Di:0.69Ri(C’L C'mt) (%ﬁz (Vi / ;) Z No; X

FEFO(i)

D = 0.69RC: delay of unit scaled inverter with no load

e D, are posynomials (of scale factors)
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Paths and circuit delay

e delay of a path: sum of delays of gates on path
. . . posynomial

e circuit delay: maximum delay over all paths
. . . generalized posynomial
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Basic gate scaling problem

minimize D
subject to P < P™#*, A < Amax
1<z, 1=1,....n

...a GGP
extensions/variations:

e minimize area, power, or some combination
e add other constraints

e optimal trade-off of area, power, delay
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minimize
subject to

minimize
subject to

..a GGP
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P

D < Dmax A < Amax
lzgnguz, ’1::1,...,71
max{z;,,z; } <pr, k=1,.
PD

A < Amax

lzgnguz, ’1,—1,...,77,
pr <z /v <q k=1,
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Example: Ladner-Fisher 32-bit adder

e 451 gates (scale factors); RC gate delay model

e typical optimization time: few seconds on PC

70D

50D _
7T00A Amax 1200A
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Ladner-Fisher 32-bit adder with integer scale factors

e add constraints x; € {1,2,3,...}

e simple rounding of optimal continuous scalings

80D

after rounding i

> before rounding

50D _
700A Amax 1200A
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Sparse GP gate scaling problem

minimize D

subject to T1; <D for j an output gate
P S Pmax’ A S Amax
1§£IZ‘Z', izl,...,n

e I’; are upper bounds on signal arrival times

e extremely sparse GP; can be solved very efficiently
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Basic formulation vs. Sparse formulation

e assume combinational circuit structure below

e number of contraints grows ~ (O(2") in basic formulation
e number of contraints grows ~ O(n) in sparse formulation

e hence sparse formulation is far superior to basic formulation
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Better (generalized posynomial) models

can greatly improve model, while retaining GP compatibility
(hence efficient global solution)

e area, delay, power can be any generalized posynomials of scale factors,
e.qg.,

D; = a; + bi(C) a0, Py = ¢+ di(C7)' 2 + eyt

1

e these can be found by more refined analysis, or fitting generalized
posynomials to simulation/characterization data
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Distinguishing gate transitions

e can distinguish rising and falling transitions, with different delay, energy,
C'™, for each gate input/transition

e (bounds on) signal arrival times can be propagated through recursions,
e.g.,

T = max {T! + D%, T; + D3}, T, = max {T} + D}, T, + D%,

JEFI(i ' jEFI() I

e still a GGP, hence can be efficiently solved
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Further Improvement

e modeling signal slopes

e arrival time propagation with soft maximum
e design with a standard library

e robust design over corners

e multiple-scenario design

CoSoC Seminar I, SNU, 9/23/2005
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Modeling signal slopes

e associate (worst-case) output signal transition time 7 with each gate

e model delay, energy, input capacitance as (generalized posynomial)
functions of scale factor, load capacitance, input transition time

e propagate output transition time using (generalized posynomial)
function of scale factor, load capacitance, input transition time

e common model:

D; = a;,Cy [xi + ki", E; = bi(Cy + ciw;) + Niwi,", T = v;D;

e gate scaling problem still a GGP
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Arrival time propagation with soft maximum

e can even generalize max function used to propagate signal arrival times
e replace with soft maximum, e.g., (T} + -+ + T,f)l/p (say, p ~ 10)

e can account for increased delay when inputs switch simultaneously

e can choose soft maximum function by fitting simulation data

e gate scaling problem remains a GGP
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Design with a standard library

e circuit topology is fixed; choose size for each gate from discrete library

e a combinatorial optimization problem, difficult to solve exactly

e GP approach

— for each gate type in library, fit given library data to find
GP-compatible models of delay, power, . ..

— size with continuous fitted models, using GP

— snap continuous scale factors back to standard library

CoSoC Seminar I, SNU, 9/23/2005 44



Robust design over corners

e have K corners or scenarios, e.g., combinations of

— process parameters
— supply voltage
— temperature

e for each corner have (slightly) different models for delay, power, . . .

e robust design finds gate scalings that work well for all corners
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Robust design over corners

e basic (worst-case) robust design over corners:

minimize maX{D(l), L D(K)}
subject to PN (z) < pmax P (g) < pmax
A S Amax

1<z, 1=1,...,n

e many variations, e.qg., minimize average delay over corners,

(1/K) (D(l) 4o D(K)>
e results in (very large, but sparse) GGP
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Multiple-scenario design

e have K scenarios or operating modes, with K models for P, D, . ..

e scenarios are combinations of

— supply & threshold voltages
— clock frequency
— specifications & constraints

e like corner-based robust design, but scenarios are intentional

e find one set of gate scalings that work well in all scenarios
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Example

e find single set of gate scalings to support both high performance mode
and low power mode

— in high performance mode: Pfast < pfast  pfast < pfast
— in low power mode: Pslow < pslow = pslow < pyslow

minimize A

: 1 psl 1 sl
subject to Pj ow L {Dfs ow l?s ow S_lfDS ow
Past S Past’ D ast S D ast
1<z, 12=1,...,n

...a GGP
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Statistical Digital Circuit Design Applications



Statistical parameter variations in circuits

e statistical variations in process

— random defects: random particles while CMP, CVD, PVD, etc.
— systematic defects: OPC, etc.

e statistical variations in environment: supply voltage, temperature, etc.

= induces statistical variations in (physical) parameters, e.g., Leg, W,
Tox: Vinhos Un, €tc.
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DFM & yield enhancement

e statistical variation significantly affects performance in DSM regime

e statistical variation is very complex and extremely hard; modeling still
open

e merely start exploring statistical design methods; DFM, DFY, DFT, etc.

e everyone is having difficulty achieving this goal
(but everyone is doing it!)

refer to ITRS
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Statistical performance variation

e circuit peformance depends on random device and process parameters
e hence, performance measures like P, D are random variables P, D
e delay D is max of many random variables; often skewed to right

e distributions of P, D depend on gate scalings z;

PDF

50D circuit delay D

e related to (parametric) yield, DFM, DFY . ..
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Statistical design

e measure random performance measures by 95% quantile (say)

minimize Q°(D)
subject to Q°(P) < Pmax, A < Amax
1<z, 2=1,....n

o extremely difficult stochastic optimization problem; almost no
analytic/exact results

e but, (GP-compatible) heuristic method works well
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Heuristic for statistical design

e assume generalized posynomial models for gate delay mean D;(x) and
variance o;(x)?

e c.g., 0i(x) = mx;lmDi(x) (Pelgrom’s model)
e optimize using surrogate gate delays

k;0:(x) are margins on gate delays (k; is typically 2 or 3)

e verify statistical performance via Monte Carlo
(can update k;'s and repeat)
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Ladner-Fisher 32-bit adder example

e minimize maximum delay with
constraints

e simplified RC delay model

e Pelgrom variation model
(15% o/ for min size devices)

e design variables:
device widths for 451 gates . . .

CoSoC Seminar I, SNU, 9/23/2005
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Nominal (or deterministic) optimization result

7000

soooﬁ «~—nominal optimal valud

5000 |-

197

A
o
o
o

# of paths

3000 —

2000 -

1000 -

I I I I I I I
30 35 40 45 50 55 60 65

path delay
.. around 2800 of 6400 total paths are critical
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Cost of statistical variation

Monte Carlo analysis of nominal optimal design

03} PDF of Cycle time

nomlinal optimal value 90% delay

0.2
0.15

|
|
|
|
|
|
|
|
|
|
|
|

0.1

|

<— cost aof variation

0.05F e e iy

! ! 1 ! ! ! !
44 46 48 50 52 54 56 58

cycle time
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Statistically robust design via new method

same circuit, uncertainty model, and constraints

3F T T
statistical design

25

90% delay — 90% delay

15F

value of statistical design

l nominal optimal design —

L T

1 it Il
46 48 50 52 54 56 58

cycle time
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Statistically robust design via new method

Nominal delay 90% delay

Nominal design 45.4 53.6
Statistical design 46.3 46.9
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Nominal optimal versus statistical design

7000

6000 nominal optimal

statistical
5000

T

4000

T

3000

T

# of paths

2000

T

1000

T

0 I I I I I I I |
30 35 40 45 50 55 60 65

path delay
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Path delay mean/std. dev. scatter plots
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Monomial and Posynomial Fitting



A basic property of posynomials

e if f is a monomial, then log f(e¥) is affine (linear plus constant)
e if f is a posynomial, then log f(e¥) is convex
e roughly speaking, a posynomial is convex when plotted on log-log plot

e midpoint rule for posynomial f:

— let 2z be elementwise geometric mean of x, vy, i.e., z; = /i

— then f(2) < +/f(z)f(y)

e a converse: if log ¢(e¥) is convex, then ¢ can be approximated as well
as you like by a posynomial
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Monomial /posynomial approximation: Theory

when can a function f be approximated by a monomial or generalized
posynomial?

e form function F'(y) = log f(eY)

e f can be approximated by a monomial if and only if F' is nearly affine
(linear plus constant)

e f can be approximated by a generalized posynomial if and only if F'is
nearly convex
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Examples

1 ‘ —————0.5/(1.5 — x)
tanh(x)
2 S —t2 d
\/_Efm (& t
O-1p 1 1

e tanh(x) can be reasonably well fit by a monomial
e 0.5/(1.5 — x) can be fit by a generalized posynomial

2
o (2//m) fxoo e " dt cannot be fit very well by a generalized posynomial
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What problems can be approximated by GGPs?

minimize  fo(x)
subject to  fi(z) <

e transformed objective and inequality constraint functions
F;(y) = log fi(eY) must be nearly convex

e transformed equality constraint functions G;(y) = log g;(€¥) must be

nearly affine
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Monomial fitting via log-regression
find coefficient ¢ > 0 and exponents a1, ..., a, of monomial f so that
f(x(i))%f(i), i=1,...,N
® rewrite as

log f(z7) = logc+aylogal” + - + a,log z?
~ logf®,  i=1,...,N

e use least-squares (regression) to find logec, aq, ..., a, that minimize
. ' . N\ 2
Z (logc + a log acgz) + 4 aplogz) — 1ng(2))
i=1
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Posynomial fitting via Gauss-Newton

find coefficients and exponents of posynomial f so that
f@)~ D i=1,... N

e minimize sum of squared fractional errors

N : : 2
fO - f)
()

1=1

can be (locally) solved by Gauss-Newton method

e needs starting guess for coefficients, exponents
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Posynomial fitting example

e 1000 data points from f(z) = (1 — 0.5(x? 4+ x5 + 25 ' — 1)2)1/2 over

e cumulative error distribution for 3-, 5-, and 10-term posynomial fits

100%

fraction of data points

0%

0% fitting error 3.5%
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Statistical Power and Ground Network Design



Global power & ground network design

| !

Problem: size wires (choose topology)

e minimize wire area subject to node voltage, current density constraints
e don't consider fast dynamics (C,L)

e do consider (slow) variation in block currents
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(Quasi-)static model
AW v

I;

e segment conductance gi = wy/(ply); current density jr = ix/wg
e conductance matrix G(w) = Y, wraga; ; node voltages V = G(w) 11
e statistical model for block currents: EJ[T =T

— I' is block current correlation matrix
— F;j/? = RMS(Z,); I';; gives correlation between I;, I;
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Sizing problem

minimize A=), lyw; (area)

subject to  V; < Vijax (node voltage limit)
Ej2 <j2..  (RMS current density limit)
wy > 0 (nonneg. wire widths)

can't solve, except special case I constant

e (Erhard & Johannes) can improve any mesh design by pruning to a tree

e (Chowdhury & Breuer) can size P&G trees via geometric programming
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Meshes, trees and current variation

D W e D

N N

e [y, I constant (or highly correlated): set wo = 0 (yields tree)

e [, I anti-correlated: better to use wy > 0 (yields mesh)
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Average power formulation

e power dissipated in wires: P = V1T = ITG(w) I
e average power: EP =EI'G(w) ' = Tr G(w)~ T

minimize TrG(w) T+ up>., lywy (average power +p-area)
subject to wy > 0

e parameter i > 0 trades off average power, area
e nonlinear but convex problem, readily (globally) solved

e indirectly limits E jZ, V;
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Properties of solution

observation: many wy's are zero, i.e., many wires aren't used

average power formulation can be used for P&G topology selection:

e start with lots of (potential) wires
e let average power formulation choose among them

e topology (given by nonzero wy) independent of u

resulting current density and node voltages:

e RMS current density is equal in all (nonzero) segments
in fact u = pj2., vields Ej7 = 52 _in all (nonzero) segments

e observation: V‘7 are small
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Example

[N
o

=1

52

34

=3

35

37

36

38

1
[N o - N w IS & o ~ © ©
T T T T T T T T T T

e 10x 10 grid, each node connected to neighbors (180 segments)
e 8 current sources, I € R® is random with three possible values

e 4 ground pins on the perimeter (at corner points)
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design for constant currents (with same RMS values)

10

i i_T j e a tree; each source connected
T | to nearest ground pin
o e RMS current density 1,
J_Ts | area = 448,
- | max. voltage = 7.7

design via average power formulation

I e mesh, not a tree

e RMS current density 1,
area = 347,

) l ] max. voltage = 5.7
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Barrier method

use Newton’'s method to minimize

Tr G(w) T + pltw — ¥ Zlog Wi
k

e barrier term —3 ), logwy, ensures wy > 0
e solve for decreasing sequence of 3%
e can show w(® is at most n3(") suboptimal

e O(n?) cost per Newton step

works very well for n < 1000 or so; easy to add other convex constraints
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Pruning

e often clear in few iterations which w; are converging to 0
e removing these w; early greatly speeds up convergence

e sizes 1000s of wxs in minutes
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Where I' comes from

1

e from simulation: T' =

/ o I()I()" dt

sim
e or, from block RMS currents and estimates of correlation:

[';j = RMS(Z;) RMS(1;) pi;
e can use eigenvalue decomposition to simplify I’
['= Z Nigig; = i: Nididq;
i i=1
(reduced rank approximation speeds up avg. pwr. solution)
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Observations

o P&G meshes outperform trees when current variation taken into account

e Average power formulation

— vyields tractable convex optimization problem
— chooses topology

— guarantees RMS current density limit

— indirectly limits node voltages
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Conclusions



Conclusions

(generalized) geometric programming

e comes up in a variety of circuit sizing contexts
e can be used to formulate a variety of problems
e admits fast, reliable solution of large-scale problems

e is good at concurrently balancing lots of coupled constraints and
objectives

e is useful even when problem has discrete constraints
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Do we remember what this talk has been
about?

Let me re-emphasize moral!



Approach

e most problems don't come naturally in GP form; be prepared to
reformulate and/or approximate

e GP modeling is not a “try my software” method; it requires thinking

e our approach:

— start with simple analytical models (RC, square-law, Pelgrom, . .
to verify GP might apply
— then fit GP-compatible models to simulation or measured data
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e looking for keys under street light
(not where keys were lost, but lighting is good)

e forcing problems into GP-compatible form
(problems aren’t GPs, but solving is good)

e can achieve robust and statistically better design
even though cannot do good statistical analysis
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Thank You

e-mail: sunghee_yun@hotmail.com



