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Basic Approach



Basic approach

1. formulate circuit design problem as geometric program (GP), an
optimization problem with special form

2. solve GP using specialized method exploiting problem structure

• this talk focuses on step 1 (a.k.a. GP modeling)

• step 2 is technology

– you don’t need to know
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Why?

• we can solve even large GPs very effectively, using recently developed
methods

• so once we have a GP formulation, we can solve circuit design problem
effectively

we will see that

• GP is especially good at handling a large number of concurrent
constraints

• GP formulation is useful even when it is approximate
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Trade-offs in optimization

• general trade-off between generality and effectiveness

• generality

– number of problems that can be handled
– accuracy of formulation
– ease of formulation

• effectiveness

– speed of solution, scale of problems that can be handled
– global vs. local solutions
– reliability, baby-sitting, starting point

• example: least-squares vs. simulated annealing
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Where GP fits in

Least-squares

large problems solved

no initial point theory

solves restricted forms

Convex optimization

optimality condition

duality theory

somewhere in between

good trade-off

formulations takes effort

high payoff, however

Simulated annealing

any nonlinear problem

accuray of formulation

eash of formulation

need to break this barrier

CoSoC Seminar II, SNU, 9/23/2005 5



Geometric Programming



Monomial & posynomial functions

x = (x1, . . . , xn): vector of positive optimization variables

• function g of form
g(x) = cxα1

1 xα2
2 · · ·xαn

n ,

with c > 0, αi ∈ R, is called monomial

• sum of monomials, i.e., function f of form

f(x) =
t

∑

k=1

ckx
α1k
1 x

α2k
2 · · ·xαnk

n ,

with ck > 0, αik ∈ R, is called posynomial
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Examples

with x, y, z variables,

• 0.23, 2z
√

x/y, 3x2y−.12z are monomials (hence also posynomials)

• 0.23 + x/y, 2(1 + xy)3, 2x + 3y + 2z are posynomials

• 2x + 3y − 2z, x2 + tanx are neither
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Geometric program (GP)

a special form of optimization problem:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, . . . ,m
gi(x) = 1, i = 1, . . . , p

fi are posynomials and gi are monomials

• a highly nonlinear constrained optimization problem

• but, can be solved extremely efficiently

– dense 1000 vbles, 10000 constraints: one minute on PC
– sparse 1M vbles, 10M constraints: one hour on PC
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Example

minimize x−1y

subject to 2x−1 ≤ 1,
(1/3)x ≤ 1,
x2y−1/2 + 3y1/2z−1 ≤ 1,
xy−1z−2 = 1

• this one could be solved by hand, or by sweeping values of x, y, and z

• but a GP with 1000 variables (which is easily solved if you know how)
cannot be solved by hand or sweeping
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Posynomial and monomial algebra

• monomials closed under products, division, positive scaling, powers
(hence, inverse), e.g.,

(

2x−0.2y1.1
) (

0.3xy−0.3z2
)

= 0.6x0.8y0.8z2

• posynomials closed under sums, products, positive scaling, division by
monomials, positive integer powers
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Simple GP extensions

• maximizing a monomial objective g

– same as minimizing g−1, a monomial (hence also posynomial)

• monomial-monomial equality constraint g1 = g2

– same as monomial equality constraint g1/g2 = 1

• posynomial-monomial inequality constraint f ≤ g

– same as posynomial inequality constraint f/g ≤ 1
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Example

• maximize volume of box with width w, height h, length d

• subject to limits on wall and floor areas, aspect ratios h/w, d/w

maximize hwd
subject to 2(hw + hd) ≤ Awall, wd ≤ Aflr

α ≤ h/w ≤ β, γ ≤ d/w ≤ δ

in standard GP form:

minimize h−1w−1d−1

subject to (2/Awall)hw + (2/Awall)hd ≤ 1, (1/Aflr)wd ≤ 1
αh−1w ≤ 1, (1/β)hw−1 ≤ 1
γwd−1 ≤ 1, (1/δ)w−1d ≤ 1
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Trade-off analysis

(no equality constraints, for simplicity)

• form perturbed version of original GP, with changed righthand sides:

minimize f0(x)
subject to fi(x) ≤ ui, i = 1, . . . , m

• ui > 1 (ui < 1) means ith constraint is relaxed (tightened)

• let p(u) be optimal value of perturbed problem

• plot of p vs. u is (globally) optimal trade-off surface (of objective
against constraints)
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Trade-off curves for maximum volume box example

Afloor

V

10 102 103
1

10

102

103

Awall = 10

Awall = 50

Awall = 100

• maximum volume V vs. Aflr, for Awall = 10, 50, 100

• h/w, d/w aspect ratio limits 0.5, 2
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Sensitivity analysis

• optimal sensitivity of ith constraint is

Si =
∂p/p

∂ui/ui

∣

∣

∣

∣

u=1

• Si predicts fractional change in optimal objective value if ith constraint
is (slightly) relaxed or tightened

• very useful in practice; give quantitative measure of how tight a binding
constraint is

• when we solve a GP we get all optimal sensitivities at no extra cost
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Example

• minimize circuit delay, subject to power, area constraints (details later)

minimize D(x)
subject to P (x) ≤ Pmax, A(x) ≤ Amax

• both constraints tight at optimal x⋆: P (x⋆) = Pmax, A(x⋆) = Amax

• suppose optimal sensitivities are Spwr = −2.1, Sarea = −0.3

• we predict:

– for 1% increase in allowed power, optimal delay decreases 2.1%
– for 1% increase in allowed area, optimal delay decreases 0.3%
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How GPs are solved

the practical answer: you don’t need to know

it’s technology:

• good algorithms are known

• good software implementations are available
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How GPs are solved

• work with log of variables: yi = log xi

• take log of monomials/posynomials to get

minimize log f0(e
y)

subject to log fi(e
y) ≤ 0, i = 1, . . . , m

log gi(e
y) = 0, i = 1, . . . , p

• log fi(e
y) are convex functions

• log gi(e
y) are affine functions, i.e., linear plus a constant

• solve (nonlinear) convex optimization problem above using
interior-point method
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Example

f(x, y, z) := xyz

substitute (x, y, z) with (ev, ew, eu) respectively and take log of f

g(v, w, u) := log f(ev, ew, eu) = v + w + u

• f is not a convex function in (x, y, z)

• g is a convex function in (v, w, u), however
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Current state of the art

• basic interior-point method that exploits sparsity, generic GP structure

• approaching efficiency of linear programming solver

– sparse 1000 vbles, 10000 monomial terms: few seconds
– sparse 10000 vbles, 100000 monomial terms: minute
– sparse 106 vbles, 107 monomial terms: hour

(these are order-of-magnitude estimates, on simple PC)
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History

• GP (and term ‘posynomial’) introduced in 1967 by Duffin, Peterson,
Zener

• engineering applications from the very beginning

– early applications in chemical, mechanical, power engineering
– digital circuit transistor and wire sizing with Elmore delay since 1984

(Fishburn & Dunlap’s TILOS)
– analog circuit design since 1997 (Hershenson, Boyd, Lee)

• extremely efficient solution methods since 1994 or so
(Nesterov & Nemirovsky)
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Generalized Geometric Programming



Handling positive fractional powers

• suppose f1, f2 are posynomials

• we can handle f1 + f3
2 ≤ 1 directly, since LHS is posynomial

• we can’t handle f1 + f3.1
2 ≤ 1, since f3.1

2 isn’t posynomial

• trick: replace inequality f1(x) + f2(x)
3.1 ≤ 1 with two (posy)

inequalities
f1(x) + t3.1 ≤ 1, f2(x) ≤ t

t is new variable (called dummy or slack)
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Handling maximum

• suppose f1, f2, f3 are posynomials

• can’t handle f1 + max{f2, f3} ≤ 1 since max{f2, f3} isn’t posynomial

• trick: replace f1 + max{f2, f3} ≤ 1 with three (posy) inequalities

f1 + t ≤ 1, f2 ≤ t, f3 ≤ t

t is new slack variable

• can be applied recursively, together with fractional power trick
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Example

minimize xyz + 4x−1y−3/2

subject to max{x, y} + z ≤ 1
y(x1/2 + 3z)1/2 + z2 ≤ 1

equivalent to GP

minimize xyz + 4x−1y−3/2

subject to t1 + z ≤ 1, x ≤ t1, y ≤ t1

yt
1/2
2 + z2 ≤ 1, x1/2 + 3z ≤ t2

(t1 and t2 are new variables)
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Generalized posynomials

f is a generalized posynomial if it can be formed using addition,
multiplication, positive power, and maximum, starting from posynomials

examples:

• max
{

1 + x1, 2x1 + x0.2
2 x−3.9

3

}

•
(

0.1x1x
−0.5
3 + x1.7

2 x0.7
3

)1.5

•
(

max
{

1 + x1, 2x1 + x0.2
2 x−3.9

3

})1.7
+ x1.1

2 x3.7
3

• 4x−0.1
1 x2.7

2 max
{

max
{

1 + x1, 2x1 + x0.2
2 x−3.9

3

}

+ x1.1
2 , x1x2x3

}
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Generalized geometric program (GGP)

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p

fi are generalized posynomials, gi are monomials

• using tricks, can convert GGP to GP, then solve efficiently

• conversion tricks can be automated

– parser scans problem description, forms GP
– GP solver solves GP
– solution transformed back (dummy variables eliminated)
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Floor planning

• configure cell widths, heights

• minimize bounding box area

• fixed cell areas

• aspect ratio constraints

w1 w2

w3
w4

w

h1 h2

h3 h4

h

minimize hw
subject to hiwi = Ai, 1/αmax ≤ hi/wi ≤ αmax,

max{h1, h2} + max{h3, h4} ≤ h,
max{w1 + w2, w3 + w4} ≤ w

. . . a GGP
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Digital Circuit Design Applications



Gate scaling

1

2

3

4

5

6

7

input flip flops output flip flops

in out

clock

combinational logic block

• combinational logic; circuit topology & gate types given

• gate sizes (scale factors xi ≥ 1) to be determined

• scale factors affect total circuit area, power and delay
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Area & power

• (approximate) total circuit area: A = (a1x1 + · · · + anxn)Ā

– Ā: area of unit scaled inverter
– ai: area of unit scaled gate i (in units of Ā)

• total power (dynamic + static):

P = (b1x1 + · · · + bnxn)fclkĒ + (c1x1 + · · · + cnxn)

– fclk: clock frequency
– Ē: energy lost per transition by unit scaled inverter driving no load

• A and P are linear functions of x, with positive coefficients, hence
posynomials
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RC gate delay model

PSfrag

Ri

Vdd

C in
i

C in
i

C int
i CL

i

• input & intrinsic capacitances, driving resistance, load capacitance

C in
i = C̄ in

i xi, C int
i = C̄ int

i xi, Ri = R̄i/xi, CL
i =

∑

j∈FO(i)

C in
j
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RC gate delay model

• model
C̄ in

i = αiηC̄, C̄ int
i = βiC̄, Ri = γiR̄/xi

– C̄: intrinsic capacitance of unit scaled inverter
– η: (input capacitance of unit scaled inverter)/C̄
– R̄: driving resistance of unit scaled inverter

• RC gate delay:

Di = 0.69Ri(C
L
i + C int

i ) =

(

γiβi + (γi/xi)
∑

j∈FO(i)

ηαjxj

)

D̄

D̄ = 0.69R̄C̄: delay of unit scaled inverter with no load

• Di are posynomials (of scale factors)

CoSoC Seminar II, SNU, 9/23/2005 31



Paths and circuit delay

1

2

3

4

5

6

7

• delay of a path: sum of delays of gates on path
. . . posynomial

• circuit delay: maximum delay over all paths
. . . generalized posynomial
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Basic gate scaling problem

minimize D
subject to P ≤ Pmax, A ≤ Amax

1 ≤ xi, i = 1, . . . , n

. . . a GGP

extensions/variations:

• minimize area, power, or some combination

• add other constraints

• optimal trade-off of area, power, delay
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Extensions

minimize P
subject to D ≤ Dmax, A ≤ Amax

li ≤ xi ≤ ui, i = 1, . . . , n
max{xik, xjk

} ≤ pk, k = 1, . . . , m

minimize PD
subject to A ≤ Amax

li ≤ xi ≤ ui, i = 1, . . . , n
pk ≤ xik/xjk

≤ qk, k = 1, . . . ,m

. . . a GGP
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Example: Ladner-Fisher 32-bit adder

• 451 gates (scale factors); RC gate delay model

• typical optimization time: few seconds on PC

Amax

D

700Ā 1200Ā
50D̄

70D̄
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Ladner-Fisher 32-bit adder with integer scale factors

• add constraints xi ∈ {1, 2, 3, . . .}
• simple rounding of optimal continuous scalings

Amax

D

700Ā 1200Ā
50D̄

80D̄

after rounding

before rounding
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Sparse GP gate scaling problem

minimize D
subject to Tj ≤ D for j an output gate

Tj + Di ≤ Ti for j ∈ FI(i)
P ≤ Pmax, A ≤ Amax

1 ≤ xi, i = 1, . . . , n

• Ti are upper bounds on signal arrival times

• extremely sparse GP; can be solved very efficiently
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Basic formulation vs. Sparse formulation

• assume combinational circuit structure below

· · ·

• number of contraints grows ∼ O(2n) in basic formulation

• number of contraints grows ∼ O(n) in sparse formulation

• hence sparse formulation is far superior to basic formulation
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Better (generalized posynomial) models

can greatly improve model, while retaining GP compatibility
(hence efficient global solution)

• area, delay, power can be any generalized posynomials of scale factors,
e.g.,

Di = ai + bi(C
L
i )1.05x−0.9

i , Pi = ci + di(C
L
i )1.2 + eix

1.1
i

• these can be found by more refined analysis, or fitting generalized
posynomials to simulation/characterization data

CoSoC Seminar II, SNU, 9/23/2005 39



Distinguishing gate transitions

• can distinguish rising and falling transitions, with different delay, energy,
C in, for each gate input/transition

• (bounds on) signal arrival times can be propagated through recursions,
e.g.,

T r
i = max

j∈FI(i)

{

T r
j + Drr

ji, T f
j + Dfr

ji

}

, T f
i = max

j∈FI(i)

{

T r
j + Drf

ji, T f
j + Dff

ji

}

• still a GGP, hence can be efficiently solved
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Further Improvement

• modeling signal slopes

• arrival time propagation with soft maximum

• design with a standard library

• robust design over corners

• multiple-scenario design
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Modeling signal slopes

• associate (worst-case) output signal transition time τ with each gate

• model delay, energy, input capacitance as (generalized posynomial)
functions of scale factor, load capacitance, input transition time

• propagate output transition time using (generalized posynomial)
function of scale factor, load capacitance, input transition time

• common model:

Di = aiC
L
i /xi +κiτ

in
i , Ei = bi(C

L
i + cixi)+λixiτ

in
i , τi = νiDi

• gate scaling problem still a GGP
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Arrival time propagation with soft maximum

• can even generalize max function used to propagate signal arrival times

• replace with soft maximum, e.g., (T p
1 + · · · + T p

k )1/p (say, p ≈ 10)

• can account for increased delay when inputs switch simultaneously

• can choose soft maximum function by fitting simulation data

• gate scaling problem remains a GGP
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Design with a standard library

• circuit topology is fixed; choose size for each gate from discrete library

• a combinatorial optimization problem, difficult to solve exactly

• GP approach

– for each gate type in library, fit given library data to find
GP-compatible models of delay, power, . . .

– size with continuous fitted models, using GP

– snap continuous scale factors back to standard library
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Robust design over corners

• have K corners or scenarios, e.g., combinations of

– process parameters
– supply voltage
– temperature

• for each corner have (slightly) different models for delay, power, . . .

• robust design finds gate scalings that work well for all corners

CoSoC Seminar II, SNU, 9/23/2005 45



Robust design over corners

• basic (worst-case) robust design over corners:

minimize max{D(1), . . . , D(K)}
subject to P (1)(x) ≤ Pmax, . . . , P (K)(x) ≤ Pmax

A ≤ Amax

1 ≤ xi, i = 1, . . . , n

• many variations, e.g., minimize average delay over corners,

(1/K)
(

D(1) + · · · + D(K)
)

• results in (very large, but sparse) GGP
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Multiple-scenario design

• have K scenarios or operating modes, with K models for P , D, . . .

• scenarios are combinations of

– supply & threshold voltages
– clock frequency
– specifications & constraints

• like corner-based robust design, but scenarios are intentional

• find one set of gate scalings that work well in all scenarios
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Example

• find single set of gate scalings to support both high performance mode
and low power mode

– in high performance mode: P fast ≤ P̄ fast, Dfast ≤ D̄fast

– in low power mode: P slow ≤ P̄ slow, Dslow ≤ D̄slow

minimize A
subject to P slow ≤ P̄ slow, Dslow ≤ D̄slow

P fast ≤ P̄ fast, Dfast ≤ D̄fast

1 ≤ xi, i = 1, . . . , n

. . . a GGP
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Statistical Digital Circuit Design Applications



Statistical parameter variations in circuits

• statistical variations in process

– random defects: random particles while CMP, CVD, PVD, etc.

– systematic defects: OPC, etc.

• statistical variations in environment: supply voltage, temperature, etc.

⇒ induces statistical variations in (physical) parameters, e.g., Leff, W ,
Tox, Vtho, µn, etc.
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DFM & yield enhancement

• statistical variation significantly affects performance in DSM regime

• statistical variation is very complex and extremely hard; modeling still
open

• merely start exploring statistical design methods; DFM, DFY, DFT, etc.

• everyone is having difficulty achieving this goal
(but everyone is doing it!)

refer to ITRS
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Statistical performance variation

• circuit peformance depends on random device and process parameters

• hence, performance measures like P , D are random variables P, D

• delay D is max of many random variables; often skewed to right

• distributions of P, D depend on gate scalings xi

50D̄ 75D̄circuit delay

P
D

F

• related to (parametric) yield, DFM, DFY . . .
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Statistical design

• measure random performance measures by 95% quantile (say)

minimize Q.95(D)
subject to Q.95(P) ≤ Pmax, A ≤ Amax

1 ≤ xi, i = 1, . . . , n

• extremely difficult stochastic optimization problem; almost no
analytic/exact results

• but, (GP-compatible) heuristic method works well
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Heuristic for statistical design

• assume generalized posynomial models for gate delay mean Di(x) and
variance σi(x)2

• e.g., σi(x) = ηix
−1/2
i Di(x) (Pelgrom’s model)

• optimize using surrogate gate delays

D̃i(x) = Di(x) + κiσi(x)

κiσi(x) are margins on gate delays (κi is typically 2 or 3)

• verify statistical performance via Monte Carlo
(can update κi’s and repeat)
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Ladner-Fisher 32-bit adder example

• minimize maximum delay with
constraints

• simplified RC delay model

• Pelgrom variation model
(15% σ/µ for min size devices)

• design variables:
device widths for 451 gates . . .

32

32

32

Schematic of Ladner-Fisher 32-bit adder
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Nominal (or deterministic) optimization result

30 35 40 45 50 55 60 65
0

1000

2000

3000

4000

5000

6000

7000

path delay

#
o
f
p
at

h
s

←nominal optimal value

. . . around 2800 of 6400 total paths are critical

CoSoC Seminar II, SNU, 9/23/2005 55



Cost of statistical variation

Monte Carlo analysis of nominal optimal design

44 46 48 50 52 54 56 58
0

0.05

0.1

0.15

0.2

0.25

0.3

cycle time

PDF of cycle time

nominal optimal value

← cost of variation →

90% delay
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Statistically robust design via new method

same circuit, uncertainty model, and constraints

46 48 50 52 54 56 58
0

0.5

1

1.5

2

2.5

3

cycle time

nominal optimal design→

90% delay→ ← 90% delay

statistical design

← value of statistical design
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Statistically robust design via new method

Nominal delay 90% delay

Nominal design 45.4 53.6

Statistical design 46.3 46.9
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Nominal optimal versus statistical design

30 35 40 45 50 55 60 65
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Path delay mean/std. dev. scatter plots

mean path delay

mean path delay
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nominal optimal design

statistical design
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Monomial and Posynomial Fitting



A basic property of posynomials

• if f is a monomial, then log f(ey) is affine (linear plus constant)

• if f is a posynomial, then log f(ey) is convex

• roughly speaking, a posynomial is convex when plotted on log-log plot

• midpoint rule for posynomial f :

– let z be elementwise geometric mean of x, y, i.e., zi =
√

xiyi

– then f(z) ≤
√

f(x)f(y)

• a converse: if log φ(ey) is convex, then φ can be approximated as well
as you like by a posynomial
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Monomial/posynomial approximation: Theory

when can a function f be approximated by a monomial or generalized
posynomial?

• form function F (y) = log f(ey)

• f can be approximated by a monomial if and only if F is nearly affine
(linear plus constant)

• f can be approximated by a generalized posynomial if and only if F is
nearly convex
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Examples

0.1 1
0.1

1

2√
π

R∞
x

e−t2 dt

0.5/(1.5 − x)

tanh(x)

• tanh(x) can be reasonably well fit by a monomial

• 0.5/(1.5 − x) can be fit by a generalized posynomial

• (2/
√

π)

R∞
x

e−t2 dt cannot be fit very well by a generalized posynomial
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What problems can be approximated by GGPs?

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

gi(x) = 1, i = 1, . . . , p

• transformed objective and inequality constraint functions
Fi(y) = log fi(e

y) must be nearly convex

• transformed equality constraint functions Gi(y) = log gi(e
y) must be

nearly affine
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Monomial fitting via log-regression

find coefficient c > 0 and exponents a1, . . . , an of monomial f so that

f(x(i)) ≈ f (i), i = 1, . . . , N

• rewrite as

log f(x(i)) = log c + a1 log x
(i)
1 + · · · + an log x(i)

n

≈ log f (i), i = 1, . . . , N

• use least-squares (regression) to find log c, a1, . . . , an that minimize

N
∑

i=1

(

log c + a1 log x
(i)
1 + · · · + an log x(i)

n − log f (i)
)2
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Posynomial fitting via Gauss-Newton

find coefficients and exponents of posynomial f so that

f(x(i)) ≈ f (i), i = 1, . . . , N

• minimize sum of squared fractional errors

N
∑

i=1

(

f (i) − f(x(i))

f (i)

)2

can be (locally) solved by Gauss-Newton method

• needs starting guess for coefficients, exponents
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Posynomial fitting example

• 1000 data points from f(x) = (1 − 0.5(x2
1 + x2 + x−1

3 − 1)2)1/2 over
0.1 ≤ xi ≤ 1

• cumulative error distribution for 3-, 5-, and 10-term posynomial fits

fitting error

fr
ac

ti
o
n

o
f
d
at

a
p
o
in

ts

0% 3.5%
0%

100%

CoSoC Seminar II, SNU, 9/23/2005 67



Statistical Power and Ground Network Design



Global power & ground network design

Problem: size wires (choose topology)

• minimize wire area subject to node voltage, current density constraints

• don’t consider fast dynamics (C,L)

• do consider (slow) variation in block currents
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(Quasi-)static model

Ij

gk
Vj

• segment conductance gk = wk/(ρlk); current density jk = ik/wk

• conductance matrix G(w) =
∑

k wkaka
T
k ; node voltages V = G(w)−1I

• statistical model for block currents: E IIT = Γ

– Γ is block current correlation matrix
– Γ

1/2
jj = RMS(Ij); Γij gives correlation between Ii, Ij
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Sizing problem

minimize A =
∑

k lkwk (area)

subject to Vj ≤ Vmax (node voltage limit)

E j2
k ≤ j2

max (RMS current density limit)

wk ≥ 0 (nonneg. wire widths)

can’t solve, except special case I constant

• (Erhard & Johannes) can improve any mesh design by pruning to a tree

• (Chowdhury & Breuer) can size P&G trees via geometric programming
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Meshes, trees and current variation

I1 I2
w1

w2

w3

• I1, I2 constant (or highly correlated): set w2 = 0 (yields tree)

• I1, I2 anti-correlated: better to use w2 > 0 (yields mesh)
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Average power formulation

• power dissipated in wires: P = V T I = ITG(w)−1I

• average power: EP = E ITG(w)−1I = TrG(w)−1Γ

minimize TrG(w)−1Γ + µ
∑

k lkwk (average power +µ·area)
subject to wk ≥ 0

• parameter µ > 0 trades off average power, area

• nonlinear but convex problem, readily (globally) solved

• indirectly limits E j2
k, Vj
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Properties of solution

observation: many wk’s are zero, i.e., many wires aren’t used

average power formulation can be used for P&G topology selection:

• start with lots of (potential) wires

• let average power formulation choose among them

• topology (given by nonzero wk) independent of µ

resulting current density and node voltages:

• RMS current density is equal in all (nonzero) segments
in fact µ = ρj2

max yields E j2
k = j2

max in all (nonzero) segments

• observation: Vj are small
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Example

−1 0 1 2 3 4 5 6 7 8 9 10
−1
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s1

s2

s3

s4

s5

s6

s7

s8

• 10×10 grid, each node connected to neighbors (180 segments)

• 8 current sources, I ∈ R8 is random with three possible values

• 4 ground pins on the perimeter (at corner points)
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design for constant currents (with same RMS values)

−1 0 1 2 3 4 5 6 7 8 9 10
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s1

s2

s3

s4

s5

s6

s7

s8

• a tree; each source connected
to nearest ground pin

• RMS current density 1,
area = 448,
max. voltage = 7.7

design via average power formulation
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s1

s2

s3

s4

s5

s6

s7

s8

• mesh, not a tree

• RMS current density 1,
area = 347,
max. voltage = 5.7
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Barrier method

use Newton’s method to minimize

TrG(w)−1Γ + µlTw − β(i)
∑

k

log wk

• barrier term −β
∑

k log wk ensures wk > 0

• solve for decreasing sequence of β(i)

• can show w(i) is at most nβ(i) suboptimal

• O(n3) cost per Newton step

works very well for n < 1000 or so; easy to add other convex constraints
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Pruning

• often clear in few iterations which wk are converging to 0

• removing these wk early greatly speeds up convergence

• sizes 1000s of wks in minutes
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Where Γ comes from

• from simulation: Γ =
1

Tsim

∫ Tsim

0

I(t)I(t)T dt

• or, from block RMS currents and estimates of correlation:

Γij = RMS(Ii) RMS(Ij) ρij

• can use eigenvalue decomposition to simplify Γ

Γ =
∑

i

λiqiq
T
i , Γ̂ =

r
∑

i=1

λiqiq
T
i

(reduced rank approximation speeds up avg. pwr. solution)
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Observations

• P&G meshes outperform trees when current variation taken into account

• Average power formulation

– yields tractable convex optimization problem
– chooses topology
– guarantees RMS current density limit
– indirectly limits node voltages

CoSoC Seminar II, SNU, 9/23/2005 79



Conclusions



Conclusions

(generalized) geometric programming

• comes up in a variety of circuit sizing contexts

• can be used to formulate a variety of problems

• admits fast, reliable solution of large-scale problems

• is good at concurrently balancing lots of coupled constraints and
objectives

• is useful even when problem has discrete constraints
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Do we remember what this talk has been
about?

Let me re·emphasize moral!



Approach

• most problems don’t come naturally in GP form; be prepared to
reformulate and/or approximate

• GP modeling is not a “try my software” method; it requires thinking

• our approach:

– start with simple analytical models (RC, square-law, Pelgrom, . . . )
to verify GP might apply

– then fit GP-compatible models to simulation or measured data
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• looking for keys under street light
(not where keys were lost, but lighting is good)

• forcing problems into GP-compatible form
(problems aren’t GPs, but solving is good)

• can achieve robust and statistically better design
even though cannot do good statistical analysis
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Thank You

e-mail: sunghee yun@hotmail.com


